

An International Multidisciplinary e-Magazine

Soil Day Celebration: Nurturing the Earth beneath Our Feet

[Article ID: SIMM0324]

Sampriti Guha*, Debabrata Basu, 101 Swadhin Priyadarsinee

Department of Agricultural Extension, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India- 741252

Introduction

World Soil Day, celebrated every year on December 5, is viewed as a testament to fundamental role played by soil for sustaining life on Earth. The day was formally assigned by the Food and Agriculture Organization of the United Nations (FAO) and celebrated in 2014 for the first time. The decision of selecting December 5 has its own significance, as it befalls on the birthday of King Bhumibol Adulyadej of Thailand, who was an admired figure acknowledged for his devotion to sustainable development, counting initiatives related agriculture and soil conservation.

King Bhumibol Adulyadej's Legacy:

King Bhumibol Adulyadej passed away in 2016, leaving behind an estate of sustainable development actions, posing a strong emphasis on environmental conservation and agricultural practices. One of his illustrious projects was the "Sufficiency Economy Philosophy," which endorsed moderation, self-reliance, and resilience at community and individual levels. This philosophy

affixed a strong focus on sustainable agricultural practices and environmental conservation, rhyming with the broader goals of World Soil Day.

Historical Perspectives on Soil Knowledge:

The evolution of our perception about soil and its elementary role in sustaining life has deep roots in the chronicles of human history. From ancient civilizations to the modern era, numerous thinkers and scholars have volunteered significantly to the development of soil science.

development of soil science.			
HISTORICAL PERIODS	KEY CONTRIBUTORS	CONTRIBUTIONS & CONCEPTS	
Ancient	Mesopotamia,	Recognition of soil	
Civilizations	Egypt	importance for	
	Y	agriculture in river	
		valleys	
Greek	Xenophon,	Acknowledgment of the	
Contributions	Theophrastus	link between soil	
		quality and crop	
		productivity; Study of	
		plant-soil interactions	
Middle Ages	Albertus	Insights into soil	
	Magnus, Hugh	management practices;	
	Plat	Agricultural	
	Louis	perspectives	
Scientific	Johann G.	Considered "father of	
Revolution - 17th-	Agricola	soil science";	
18th C.		Significant	
		contributions to	
		understanding minerals,	
		rocks, and soil	
		formation	
19th Century	Vasily	Dokuchaev: Introduced	
	Dokuchaev,	soil horizons and	
	Justus von	classification; Liebig:	
	Liebig	Pioneered	
		understanding of soil	
	.0)	chemical composition	
		and plant nutrition	
20th Century	Interdisciplinary	Integration of	
Crow	Growth	knowledge from	
alo.		geology, chemistry, and	
		biology into soil	
		science; Holistic	
		understanding of soil-	
		plant-environment	
		interactions	
International	International	Establishment in 1924;	
Collaboration	Society of Soil	Facilitation of global	
	Science (ISSS)	collaboration in soil	
		science research	

SOIL SCIENCE IN INDIA:

Soil science in India has a rich historical background which spans ancient agricultural practices to contemporary scientific research. The

SABUJEEMA

An International Multidisciplinary e-Magazine

perception of soil and its management has developed over the centuries, pounded by diverse influences, incorporating traditional knowledge, colonial agricultural policies, and modern scientific advancements.

Volume 3 - Issue 12- December, 2023

Here is an overview of the history of soil science in India:

PERIOD	KEY EVENTS &	SIGNIFICANT
	CONTRIBUTORS	DEVELOPMENT
Ancient	Arthashastra and	Guidelines for agriculture
Period	Manusmriti	and sustainable land use
		practices
Medieval	Krishi-Parashara	Addressed soil fertility and
Period		provided insights into
		agriculture
British	Introduction of	Surveys for revenue
Colonial	Surveys authored by	collection; Emphasis on
Period	Sir Albert Howard	organic farming
Post-	Establishment of	ICAR's role in advancing
Independence	ICAR, Agricultural	agricultural research; Focus
Era	Universities	on education
Recent	National Bureau of	Soil classification,
Developments	Soil Survey and	mapping, and research;
	Land Use Planning	Contribution to
		sustainability
Ongoing	Soil erosion,	Addressing challenges for
Challenges	Nutrient	sustainable agriculture
	management, Water	
	management	
Future	Climate change	Strategies for adaptation,
Directions	adaptation,	Integration of advanced
	Technological	techn <mark>ol</mark> ogies
	integration	

CHALLENGES IN SOIL SCIENCE:

Challenges in soil science encircles a wide range of concerns associated with soil health, sustainable land management, and global food security. These challenges are diverse, interdependent, and often require multidisciplinary approaches productive solutions.

Some key challenges in soil science are given below:

CHALLENGE	DESCRIPTION
Soil Degradation	It's a worldwide challenge mentioning factors such as erosion, nutrient depletion, salinization, and contamination, jeopardizing agriculture and ecosystem health (Montgomery, 2007; Lal, 2015).
Loss of Arable Land	Altering arable land for urbanization contributes to the depletion of valuable soil resources, posing a threat to food security (Foley et al., 2005; Tilman et al., 2011).
Climate Change Impact	Climate change influences soil conditions impacting fertility, water availability, and distribution of soil organisms, enhancing agricultural productivity and ecosystem stability (Smith et al., 2008; IPCC, 2019).

C THE MAN SEC	A 1 2 1 1 1 1
Soil Health Monitoring	Adopting secured methods to
	evaluate soil health, having
	indicators for microbial activity,
	organic matter content, and nutrient
	levels, is a critical challenge (Doran
	& Parkin, 1994; Bell et al., 2015).
Urbanization and Land Use	Rapid urbanization leads to soil
Change	fragmentation, compaction, and
Change	
	contamination, triggering effective
	management of urban soils (Pickett
	et al., 2001; Scharenbroch et al.,
	2005).
Global Food Security	Assuring global food security is
	linked to maintaining healthy soils,
	emphasizing sustainable
	agricultural practices (FAO, 2019;
S. Emerging Contaminants	Mueller et al., 2012).
Emerging Contaminants	The presence of contaminants in
1001D/1n	soils imposes environmental and
1 Man	health risks, demanding research
41	and remediation strategies
~ 0	(Kümmerer, 2010; Nehra et al.,
	2018).
Technological	Assimilating new technologies, like
Advancements	remote sensing and precision
	agriculture, into soil science is an
V	ongoing challenge (Sudduth et al.,
	2005; Schepers & Harper, 2001).
Education and Outreach	Developing awareness regarding
Education and Oddicach	fundamentals of soil health and
	sustainable practices is necessary
	for positive changes in land use and
	agriculture (Carter & Bennett,
	2016; Duncan et al., 2011).
Policy and Governance	Effective policies and international
	collabs are curated to address soil-
	related issues and promote
	sustainable soil management
	practices globally (FAO, 2015;
	Bouma, 2009).
	DE A C. OF COII

FRONTIER AREAS OF SOIL

SCIENCE RESEARCH:	
Frontier Area of Soil Science Research	Description
Soil Microbiome	Understanding diversity, structure, and function of microbial communities in the soil. Investigating their roles in nutrient cycling and plant health (Berg & Smalla, 2009; Philippot et al., 2013).
Soil Health Assessment Climate Change Impacts	Developing comprehensive methods to assess and quantify soil health. Identifying key indicators for evaluating soil quality (Doran & Parkin, 1994; Bell et al., 2015). Investigating the effects of climate change on soil properties.
	change on soil properties. Assessing the role of soils in sequestering carbon (Smith et al., 2008; Lal, 2015).
Precision Agriculture	Applying advanced technologies to optimize soil management practices based on spatial and temporal variability (Sudduth et al., 2005; Schepers & Harper, 2001).
Soil-Plant Interactions	Studying molecular and physiological mechanisms of plant-soil interactions, including the rhizosphere and mycorrhizal associations (Hinsinger et al., 2009; Bulgarelli et al., 2013).
Emerging Contaminants	Investigating the presence and

SABUJEEMA

An International Multidisciplinary e-Magazine

	effects of emerging contaminants
	in soils. Developing remediation
	strategies (Kümmerer, 2010;
	Nehra et al., 2018).
Soil Erosion and	Studying erosion processes and
Conservation	developing effective conservation
	measures (Montgomery, 2007;
	Lal, 2015).
Urban Soils	Comprehending the challenges and
	opportunities confronted in
	managing soils in urban
	environments (Pickett et al.,
	2001and Scharenbroch et al.,
	2005).
Data Integration and	Embodying various datasets
Modelling	through advanced modelling
	approaches to enhance predictions
	of soil behavior (Sudduth et al.,
	2005; Bouma, 2009).
Soil Informatics	Application of data science and
	informatics for large-scale analysis
	and translation of soil data, aiding
	data sharing in the soil science
	community (Donatelli et al., 2012;
/ ₂ Ø y	Minasny et al., 2017).

essential for ensuring a sustainable and resilient future for the planet.

As we delve into the festivities of Soil Day, it is an invitation to devote ourselves into the awe-inspiring world beneath our feet, appreciating the silent but potent contributions of soil to human well-being. This celebration act as a commitment to responsible stewardship, safeguarding the health and vitality of this precious resource for the benefit of present and future generations.

CONCLUSION:

World Soil Day celebration serves as a consolidating different nexus stakeholder—scientists, policymakers, farmers, environmentalists, and the public to acknowledge soil's crucial role sustaining life and enhancing sustainable development. The solidity of Soil Day lies in its capacity to disclose the hidden intricacies underneath the Earth's surface. From the convoluted dance of microscopic organisms structuring the soil microbiome to the symbiotic relationships between soil and plant life, the as an opportunity to spread awareness regarding soil health, chame: sustainable soil management practices, and tackle the multifaceted challenges confronting our soils. Addressing soil challenges necessitates a combination of technological advancements, policy implementation, education, and outreach. Embedded in historical significance, the day also elicit an exploration of innovative solutions,

